Sains Malaysiana 53(1)(2024):
99-110
http://doi.org/10.17576/jsm-2024-5301-08
In-vitro Inhibitory Activities of Potential Probiotic Isolated from Pangasius nasutus against Aeromonas hydrophila and Streptococcus agalactiae
(Aktiviti Perencatan In-vitro Probiotik Berpotensi Diasingkan daripada Pangasius nasutus terhadap Aeromonas
hydrophila dan Streptococcus agalactiae)
SHAFIQ JOHAR1,
PUVANESWARI PUVANASUNDRAM1,2, CLEMENT ROY DE CRUZ1,3,
CHOU MIN CHONG1,2, MD YASIN INA-SALWANY1,2, KENG CHIN LIM1,
NOORDIYANA MAT NOORDIN4 AND MURNI KARIM1,3,*
1Department
of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2Aquatic Animal Health and Therapeutics Laboratory,
Institute of Bioscience, Universiti Putra Malaysia,
43400 UPM Serdang, Selangor, Malaysia
3Laboratory
of Sustainable Aquaculture, International Institute of Aquaculture and Aquatic
Sciences, Universiti Putra Malaysia, 71050 Port
Dickson, Negeri Sembilan, Malaysia
4Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
Received:
27 October 2023/Accepted: 28 December 2023
Abstract
In aquaculture, using probiotics
is crucial for strengthening the immune system and encouraging the growth and
survival of many aquatic organisms, including the Pangasius species. This approach is particularly significant given the impact of
bacterial diseases on Pangasius survival. This
study aimed to assess the effectiveness of probiotics isolated from Pangasius nasutus as alternatives to antibiotics for combating infections caused by Aeromonas hydrophila and Streptococcus agalactiae. Potential
bacteria were isolated from the intestine and stomach of healthy P. nasutus. Seventy probiotic strains were successfully
isolated and further screened using A. hydrophilaand S. agalactiae as pathogens in an in vitro disc diffusion assay. Preliminary screenings indicated that five probiotic
strains inhibited the growth of A. hydrophila. Stomach-derived strain S1 and intestine-derived strain L1 suppressed A. hydrophila growth with inhibition zones of 10.5±1 mm
and 8.5±1 mm, respectively. Likewise, strains L2, L8, and L12 from the
intestine showed inhibitory zones of 6.0±1 mm, 6.5±1 mm, and 6.0±1 mm,
respectively. Of these, only L12 inhibited the growth of S. agalactiae with a clear zone of 5.0±1 mm. In the
elimination of pathogenic strains, potential strains S1 and L1 did not grow on
the Aeromonas isolation medium.
Co-culture assays demonstrated that both potential strains significantly
inhibited Aeromonas hydrophila growth at concentrations of 106 and 108 CFU mL-1 over 48- and 96-hour periods, respectively. The potential bacterial strains
were identified using 16s rRNA gene sequencing and
were classified as follows: S1 - Lactococcus lactis, L1 - Weissella confusa, L2 - Cosenzaea myxofaciens, L8 - Lactococcus garvieae, and L12 - Plesiomonas shigelloides. Strain S1 L. lactis and strain L1 W. confusa are suggested for further evaluation and
acquired additional research to fully elucidate their mechanisms and potential
as probiotics.
Keywords: Antagonistic activity; in
vitro screening; Pangasius species; pathogens; potential probiotics
Abstrak
Dalam
akuakultur, penggunaan probiotik adalah penting untuk menguatkan sistem
keimunan dan menggalakkan pertumbuhan dan kemandirian hidup pelbagai organisma
akuatik, termasuk spesies Pangasius. Pendekatan ini amat penting
memandangkan kesan buruk penyakit bakteria terhadap kelangsungan hidup spesies Pangasius.
Kajian ini bertujuan untuk menilai keberkesanan probiotik yang dipencilkan
daripada Pangasius nasutus sebagai alternatif kepada antibiotik untuk
melawan jangkitan penyakit yang disebabkan oleh Aeromonas hydrophila dan Streptococcus agalactiae. Bakteria berpotensi sebagai probiotik telah
diasingkan daripada organ usus dan perut P. nasutus yang sihat. Tujuh
puluh strain probiotik berjaya diasingkan dan seterusnya disaring dengan
menggunakan A. hydrophila dan S. agalactiae sebagai patogen dalam
ujian penyebaran cakera in vitro. Pemeriksaan awal menunjukkan bahawa
lima strain probiotik dapat merencat pertumbuhan A. hydrophila. Strain S1 yang dipencilkan daripada perut dan strain L1 daripada usus dapat merencat
pertumbuhan A. hydrophila dengan zon perencatan masing-masing sebanyak
10.5±1 mm dan 8.5±1 mm. Begitu juga, strain L2, L8 dan L12 daripada usus
menunjukkan zon perencatan ke atas A. hydrophila masing-masing sebanyak
6.0±1 mm, 6.5±1 mm dan 6.0±1 mm. Manakala, hanya L12 merencat pertumbuhan S.
agalactiae dengan zon yang jelas 5.0±1 mm. Dalam pengasingan strain patogen, S1 dan L1 tidak hidup di atas medium pengasingan Aeromonas.
Ujian kultur bersama menunjukkan bahawa kedua-dua SI dan LI dengan ketara
merencat pertumbuhan A. hydrophila pada kepekatan 106 dan 108 CFU mL-1 dalam tempoh 48 dan 96 jam. Semua strain bakteria
dikenal pasti menggunakan penjujukan gen 16s rRNA dan dikelaskan seperti berikut:
S1 - Lactococcus lactis, L1 - Weissella confusa, L2 - Cosenzaea
myxofaciens, L8 - Lactococcus garvieae dan L12 - Plesiomonas
shigelloides. Strain SI L. lactis dan L1 W. confusa dicadangkan untuk penilaian lanjut dan memerlukan penyelidikan tambahan untuk
menjelaskan sepenuhnya mekanisme dan potensi sebagai probiotik.
Kata kunci: Aktiviti antagonis; kajian in vitro; patogen; probiotik berpotensi;
spesies Pangasius
REFERENCES
Alonso, M., Lago,
F.C., Vieites, J.M. & Espineira,
M. 2012. Molecular characterization of microalgae used in aquaculture with
biotechnology potential. Aquaculture International 20: 847-857.
Assefa, A. & Abunna, F. 2018.
Maintenance of fish health in aquaculture: Review of epidemiological approaches
for prevention and control of infectious disease of fish. Veterinary
Medicine International 2018: 5432497.
Ayisi, C.L., Apraku, A. & Afriyie, G. 2017. A review of probiotics, prebiotics, and synbiotics in crab: Present research, problems, and future
perspective. Journal of Shellfish Research 36(3): 799-806.
Banerjee, G. &
Ray, A.K. 2017. The advancement of probiotics research and its application in
fish farming industries. Research in Veterinary Science 115: 66-77.
Barman, P., Banerjee,
A., Bandyopadhyay, P., Mondal,
K.C. & Das Mohapatra, P.K. 2011. Isolation,
identification and molecular characterization of potential probiotic bacterium, Bacillus subtilis PPP 13 from Penaeus monodon. Biotechnology, Bioinformatics, Bioengineering 1(4):
473-482.
Chapela, M.J., Ferreira, M., Varela, C., Arregui,
L. & Garrido-Maestu, A. 2018. Development of a
multiplex real-time PCR method for early diagnosis of three bacterial diseases
in fish: A real-case study in trout aquaculture. Aquaculture 496:
255-261.
Chuah, L.O., Effarizah, M.E., Goni, A.M. & Rusul, G. 2016.
Antibiotic application and emergence of multiple antibiotic resistance (MAR) in
global catfish aquaculture. Current Environmental Health Reports 3:
118-127.
Chowdhury, M.A., Roy,
N.C. & Chowdhury, A. 2020. Growth, yield and economic returns of striped
catfish (Pangasianodon hypophthalmus)
at different stocking densities under floodplain cage culture system. The
Egyptian Journal of Aquatic Research 46(1): 91-95.
Devirgiliis, C., Zinno, P. & Perozzi, G. 2013. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species. Frontiers in Microbiology 4: 301.
DOF. 2019. Annual
Fisheries Statistic 2019 (Volume 1). Department of Fisheries. https://www.dof.gov.my/sumber/i-extension/laporan-tahunan/
Dong, H.T., Nguyen,
V.V., Le, H.D., Sangsuriya, P., Jitrakorn,
S., Saksmerprome, V., Senapin,
S. & Rodkhum, C. 2015. Naturally concurrent
infections of bacterial and viral pathogens in disease outbreaks in cultured
Nile tilapia (Oreochromis niloticus) farms. Aquaculture 448:
427-435.
El‐Bouhy, Z.M., Reda, R.M., Mahboub, H.H. & Gomaa, F.N.
2021. Chelation of mercury intoxication and testing different protective
aspects of Lactococcus lactis probiotic in African catfish. Aquaculture Research 52(8):
3815-3828.
FAO. 2022. The
State of World Fisheries and Aquaculture: Towards Blue Transformation. The
State of World Fisheries and Aquaculture (SOFIA) 2019. Food and
Agriculture Organization.
Fitri, M.Y. & Christianus, A. 2019.
Morphological approaches to elucidate two closely related pangasius catfish: Morphological approaches in pangasius catfish. International Journal of Allied Health Sciences 3(4):
967-975.
Fuller, R. &
Fuller, R. 1992. History and development of probiotics. In Probiotics:
The Scientific Basis. Dordrecht: Springer. pp. 1-8.
Fulbright, S.P.,
Chisholm, S. & Reardon, K.F. 2016. Growth inhibition of Nannochloropsis species by Bacillus pumilus. Algal
Research 20: 70-76.
Grossart, H.P., Schlingloff, A., Bernhard,
M., Simon, M. & Brinkhoff, T. 2004. Antagonistic
activity of bacteria isolated from organic aggregates of the German Wadden Sea. FEMS Microbiology Ecology 47(3):
387-396.
Gustiano, R. 2003. Taxonomy and phylogeny of Pangasiidae catfishes from Asia (Ostariophysi, Siluriformes). Ph.D. Thesis, Katholieke Universiteit Leuven
(Unpublished).
Hai, N.V. 2015. The
use of probiotics in aquaculture. Journal of Applied Microbiology 119(4): 917-935.
Janda, J.M., Abbott, S.L. & McIver, C.J. 2016. Plesiomonas shigelloides revisited. Clinical Microbiology Reviews 29(2): 349-374.
Jasmin, M.Y., Wagaman, H., Yin, T.A., MY, I.S., Daud,
H.M. & Karim, M. 2016. Screening and evaluation of local bacteria isolated
from shellfish as potential probiotics against pathogenic Vibrios. Journal
of Environmental Biology 37(4): 801-809.
Knipe, H., Temperton, B., Lange, A.,
Bass, D. & Tyler, C.R. 2021. Probiotics and competitive exclusion of
pathogens in shrimp aquaculture. Reviews in Aquaculture 13(1):
324-352.
La Fata, G., Weber,
P. & Mohajeri, M.H. 2018. Probiotics and the gut
immune system: Indirect regulation. Probiotics and Antimicrobial
Proteins 10: 11-21.
Lee, O.W.S., Puvanasundram, P., Lim, K.C. & Karim, M. 2022. In
vitro assessment of multistrain probiotic on its
safety, biofilm formation capability, and antimicrobial properties against Aeromonas hydrophila. Pertanika Journal of Tropical Agricultural
Science 45(4): JTAS-2482-2022.
Li, C., Ren, Y.,
Jiang, S., Zhou, S., Zhao, J., Wang, R. & Li, Y. 2018. Effects of dietary
supplementation of four strains of lactic acid bacteria on growth,
immune-related response and genes expression of the juvenile sea cucumber Apostichopus japonicus Selenka. Fish & Shellfish Immunology 74: 69-75.
Lim, C., Webster,
C.D. & Lee, C.S. 2015. Feeding practices and fish health. In Dietary
Nutrients, Additives and Fish Health, edited by Lee, C.S., Lim, C., Gatlin
III, D.M. & Webster, C.D. Wiley-Blackwell. pp. 333-346.
Martinez-Villaluenga, C., Peñas, E. &
Frias, J. 2017. Bioactive peptides in fermented foods: Production and evidence
for health effects. In Fermented Foods in Health and Disease Prevention,
edited by Frias, J., Martinez-Villaluenga, C. & Peñas, E. Massachusetts: Academic Press. pp. 23-47.
Mahmud, N.S.,
Abdullah, S.Z., Jalal, K.C.A., Rimatulhana, R. & Amal, M.N. 2019. Assessment of bacteria and water quality
parameters in cage cultured Pangasius hypophthalmus in Temerloh,
Pahang River, Malaysia. Nature Environment & Pollution Technology 18(5):
1479-1486.
Mamun, A.A., Nasren, S., Rathore, S.S. & Mahbub Alam, M.M. 2022. Histopathological analysis of striped
catfish, Pangasianodon hypophthalmus (Sauvage, 1878) spontaneously infected with Aeromonas hydrophila. Jordan
Journal of Biological Sciences 15(1): 93-100.
Maqsood, S., Singh, P., Samoon, M.H. & Munir, K. 2011. Emerging role of immunostimulants in combating the disease outbreak in aquaculture. International Aquatic
Research (Islamic Azad University, Tonekabon Branch) 3(3):
147-163.
Masuda, M., Ide, M., Utsumi, H., Niiro, T., Shimamura, Y. & Murata, M. 2012. Production potency of
folate, vitamin B12, and thiamine by lactic acid bacteria isolated from
Japanese pickles. Bioscience, Biotechnology, and Biochemistry 76(11):
2061-2067.
Meyburgh, C.M., Bragg, R.R. & Boucher, C.E. 2017. Lactococcus garvieae: An emerging
bacterial pathogen of fish. Diseases of Aquatic Organisms 123(1):
67-79.
Meidong, R., Nakao, M., Sakai, K. & Tongpim,
S. 2021. Lactobacillus paraplantarum L34b-2
derived from fermented food improves the growth, disease resistance and innate
immunity in Pangasius bocourti. Aquaculture 531:
735878.
Nahar, S., Rahman, M.M., Ahmed, G.U. & Faruk,
M.A.R. 2016. Isolation, identification, and characterization of Aeromonas hydrophila from juvenile farmed pangasius (Pangasianodon hypophthalmus). International Journal of
Fisheries and Aquatic Studies 4(4): 52-60.
Newaj‐Fyzul, A. & Austin, B. 2015. Probiotics, immunostimulants,
plant products and oral vaccines, and their role as feed supplements in the
control of bacterial fish diseases. Journal of Fish Diseases 38(11):
937-955.
Parven, M., Alam, M.M., Khalil, S.M.I., Hamom, A., Goni, O., Rahman, M.M.
& Abdullah-Al-Mamun, M. 2020. Identification of
pathogenic bacteria from diseased Thai Pangas Pangasius hypophthalmus with their sensitivity to antibiotics. Microbiology Research Journal
International 30(3): 7-21.
Shotts Jr., E.B. & Rimler, R. 1973.
Medium for the isolation of Aeromonas hydrophila. Applied Microbiology 26(4):
550-553.
Siti-Zahrah, A., Zamri-Saad, M., Firdaus-Nawi, M., Hazreen-Nita,
M.K. & Nur-Nazifah, M. 2013. Detection of channel
catfish virus in cage-cultured Pangasius hypophthalmus (Sauvage, 1878)
in Malaysia. Journal of Fish Diseases 37(11): 981-983.
Sharma, R., Tyagi, S., Panwar, A., Kumar, S., Tyagi, C. & Kumar, Y. 2020. On annual cycle of
monogenean parasites infestation in freshwater fish Pangasius pangasius. The Scientific Temper 11(1&2).
Soni, P., Pradhan, P.K., Swaminathan,
T.R. & Sood, N. 2018. Development,
characterization and application of a new epithelial cell line from caudal fin
of Pangasianodon hypophthalmus (Sauvage 1878). Acta Tropica 182: 215-222.
Sun, Y.Z., Yang,
H.L., Ma, R.L., Song, K. & Li, J.S. 2012. Effect of Lactococcus lactis and Enterococcus faecium on growth performance, digestive enzymes and immune response of grouper Epinephelus coioides. Aquaculture
Nutrition 18(3): 281-289.
Trung, N.B. & Dung, T.T. 2023. Antimicrobial resistance and
the prevalence of integron in Aeromonas hydrophila from hemorrhagic diseased Pangasius catfish of the Mekong Delta: Veterinary
Integrative Sciences 21(2): 333-347. https://doi. org/10.12982/VIS.
2023.025
Vargas-Chacoff, L., Martínez, D., Oyarzún, R., Nualart, D., Olavarría, V., Yáñez, A., Bertrán, C., Ruiz-Jarabo, I.
& Mancera, J.M. 2014. Combined effects of high
stocking density and Piscirickettsia salmonis treatment on the immune system, metabolism and osmoregulatory responses of the Sub-Antarctic Notothenioid fish Eleginops maclovinus. Fish & Shellfish
Immunology 40(2): 424-434.
Vendrell, D., Balcázar, J.L.,
Ruiz-Zarzuela, I., De Blas, I., Gironés, O. & Múzquiz, J.L. 2006. Lactococcus garvieae in fish: A review. Comparative
Immunology, Microbiology and Infectious Diseases 29(4): 177-198.
Vinderola, G., Ouwehand, A.C., Salminen, S. & von Wright, A. 2019. Lactic Acid
Bacteria: Microbiological and Functional Aspects. Boca Raton: CRC Press.
Wang, A., Ran, C.,
Wang, Y., Zhang, Z., Ding, Q., Yang, Y., Olsen, R.E., Ringø,
E., Bindelle, J. & Zhou, Z. 2019. Use of
probiotics in aquaculture of China - A review of the past decade. Fish
& Shellfish Immunology 86: 734-755.
Yusof, F. & Nakajima,
M. 2019. Morphological tool to elucidate two closely related Pangasius catfish. International Journal of Allied
Health Sciences 3(3): 765-765.
Zhou, X., Wang, Y., Yao, J. & Li, W. 2010. Inhibition
ability of probiotic, Lactococcus lactis, against A. hydrophila and study of its immunostimulatory effect in tilapia
(Oreochromis niloticus). International
Journal of Engineering, Science and Technology 2(7): 73-80.
*Corresponding author; email: murnimarlina@upm.edu.my
|